
Angular momentum projection integrals for coherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 2101

(http://iopscience.iop.org/0305-4470/28/7/029)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys. A: Math. Gen. 28 (199s) 2101-2106. Printed in the UK 
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AbstracL Angular momentum projection integrals arising from the coherent state 
representation of bosonic spectrum generating algebras are evaluated using analytical and 
algebraic methods. For the vibron model of diatomic molecules, a closed expression is derived 
by direct integration. For the genera! case, the integral is evaluated as a UN expansion by 
exploiting the symmetries of the underlying boson system and maldng use of computer algebra. 

1. Introduction 

Algebraic methods have become important tools in nuclear and molecular shucture physics 
111. The interacting boson model (IBM) of collective nuclei [Z] and thc vibron model of 
molecules [3] are two examples of bosonic specmm generating algebras (SGA) widely used 
in the analysis of experimental data. Though algebraic methods are computationally superior 
to solving differential equations, they tend to be abstract,_lacking an immediate physical 
picture often associated with the solutions of Schrodinger-like equations. This shortcoming 
has been overcome with the introduction of coherent (intrinsic) states which conferred a 
geometric picture to the algebraic models [ 2 4 .  The intrinsic states have also been used 
in deriving various matrix elements (ME) of interest in the IBM [2]. However, because 
the rotational symmetry is broken in the intrinsic frame, these can only provide a rough 
estimate for the ME. In order to obtain more accurate results, one has to restore the rotational 
invariance by performing an,dar momentum projection. This program has been carried out 
in the IBM [5] and was shown to lead to a 1/N expansion for all ME where N denotes the 
number of bosons in the system. Since variation after projection (with a complete set of 
states) is equivalent to solving the Schrlidinger equation, this approach has the potential of 
providing analytical solutions for bosonic SGA to any desired level of accuracy (in powers 
of UN). 

A vital ingredient in the 1lN calculations is the evaluation of angular momentum 
projection integrals. These are presently available, in closed form, only in the dynamical 
symmetry limits of certain SGA, e.g.~ SU(3) in the IBM and O(4) in the vibron model. 
For general cases, a Gaussian approximation was employed in the initial papers [5], which 
limited the accuracy of the expansion to the first layer (see below for the definition of layers). 
Recently, the projection integrals were evaluated to the order UN2 using the Laplace method 
[6]. Although this method can be used, in principle, to calculate the higher orders in the 
1IN expansion, it has not been pursued as the algebraic manipulations required are tedious. 
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Also the Laplace method requires a separate calculation for each SGA which misses the 
common thread among such integrals. The level of accuracy needed to describe either the 
high-spin states in nuclei or the rotation-vibration specha in molecules is such that one 
has to evaluate energy expressions up to the order U N 6  (or to the third layer). Clearly, 
this is beyond hand calculation using asymptotic expansion methods. What is needed is 
either an exact evaluation of the integrals or an iterative method which can be adapted to 
machine calculation. In this paper, we show that the projection integral can be evaluated 
in closed form for the simplest bosonic SGA, namely the U(4) algebra of the vibron model. 
For general evaluation of the projection integrals, we propose an algebraic method based on 
the symmetries of the boson system (as opposed to the direct integration methods), which 
can easily be extended to the higher layers using the MATHEMAnCA software [7]. 
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2. Review of 1/N expansion method 

We consider a set of boson creation and annihilation operators (bf,, blm} which describe 
a variety of quantum systems depending on the values of I. For example, 1 = 0, '2 (sd 
B M )  describes quadrupole collectivity in nuclei. By adding 1 = 4 or I = 1,3  bosons, the 
sd IBM can be extended to include hexadecapole or octupole excitations. The system with 
I = 0, 1 bosons is known as the vibron model [3], and describes the molecular rotation- 
vibration spectra. Each boson system has an algebra U(n), n = Ci(21i + 1) associated 
with it, which, through the use of group theoretical techniques, provides analytical solutions 
at certain dynamical symmetry limits. The 1/N expansion method, which is based on the 
angular momentum projected mean field theory, extrapolates between these limits, providing 
analytical solutions for intermediate cases which are usually more realistic. 

An important property of a bosonic SGA describing a finite spechum is that the number 
of bosons, N ,  in the system is conserved. Thus, the ground state of a boson system can be 
written as a projective coherent state (or a condensate of inizinsic bosons) as 

IN, z) = (N!)-'/2(bt)N10) bt = xxrmb!m (1) 
lm 

where xl, are the (normalized) boson mean fields which are associated with the shape 
variables of the system, and hence provide a connection with the geometry and a physical 
picture for the SGA. As a trial state, equation (1) is complete and gives the exact ground 
energy when varied after projection (VAP). A simplifying feature of collective nuclei is 
that they are axially symmetric to a good approximation (this is, of course, exact for 
diatomic molecules). As this assumption makes the calculations much more tractable, we 
will consider in the following boson systems with axial symmetry. For such systems, K ,  
the projection to the symmetry axis is a good quantum number, and the intrinsic boson 
operators can be labelled by K ,  i.e. bf, = El xIKb!K. For the ground state which has 
K = 0, this amounts to suppressing the m sum in equation (1). Other bands are obtained 
from the ground band by acting with the orthogonal intrinsic boson operators, for example, 
the one-phonon bands are given by 14~)  = bLlN-1, z). For convenience, we will suppress 
the zero subscripts from now on, e.g. xlo 

The fundamental quantity in the 1/N expansion is the projected norm integral for the 
ground band, N,(N, L), as all the other matrix elements can be evaluated through algebraic 
manipulations of it. The norm with angular momentum projection is given by [SI 

xl,  bi = bt. 

N,(N, L )  = (N, elP&lN, 2) 



Angular momentum projection integrals for coherent sfam 2103 

where P& is the projection operator and d&, denote Wigner d matrices 181. Evaluation of 
this integral in closed form in the vibron model, and as a 1 /N expansionin general, will 
be discussed in the following sections. Here we give its generic form as a 1 / N  expansion 
151 to facilitate the discussion of layers 

1 -  1 (i2 + ol2l.E +azo) - - 
a N  

(3) 1 1 _- ( E 3  + a 3 2 P  + ff3J + a30) + . . . 

a = xix; (4) 

~ ( u N ) ~  ~. 
where the bar denotes the angular momentum eigenvalues, E L(L + 1 )  and 

1 
is ubiquitous to the angular momentum projection and represents the 'average angular 
momentum squared' carried by a single boson. The coefficients ani in equation (3) are 
functions of the mean fields XI and hence are specific to a given SGA. The expanded form 
of the norm is given to illustrate the concept of layers in the 1/N expansion. As a general 
terminology, the coefficients or,, = 1 ;n the first column are called 'first layer', CY.,-, in 
the second column 'second layer', et, 

A general boson Hamiltonian with ;ne and two-body terms can be written as 

where brackets denote the tensor coupling of the boson operators, &, = ( - l ) m b l - m ,  and AI 
and T(') are the boson number and multipole operators, respectively. The parameters in the 
model are the single boson energies E!, the multipole strengths K k ,  and the coefficients t k j l .  

For consistency, the same multipole operators are used in the calculation of electromagnetic 
transition rates. 

Once the norm of an intrinsic  state^ [ i5K)  is known, the ME of any operator can be 
evaluated in a straightforward manner using boson calculus and angular momentum algebra 
techniques 151. Here we quote the results for  the^ expectation values of the number and 
multipole operators in the ground band [5], which will he used in section 4 in an algebraic 
calculation of the coefficients an,,,: 
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where we have introduced N , ( N ,  L) = (2/a)(ZL+ I ) F ( N ,  L )  to simplify the expressions. 
The various angular momentum sums involving the Clebsch-Gordon coefficients and the 
6- j symbols in equation (6) can be evaluated using the techniques described in [SI. It is 
clear from equation (6) that knowledge of the norm integral is both necessary ind sufficient 
for an accurate evaluation of the ME. Rather than discussing individual MES, which is not 
the main concern of this paper, we concentrate on the general form of the ensuing 1 / N  
expansion as this will provide the motivation for the algebraic technique to be used in 
section 4. Using the generic form of the normalization (3). one obtains for the expectation 
value of a k-body operator 6: 

S Kuyucak and K Unnikrishnan 

001 0 0 2  0 0 3  = N k  Om+-+- +-+... [ a N  @NI3 

+ ~ ( o l , + z + 0 2 + . . .  0 1 1  0 1 2  

a2NZ 

The expansion coefficients On, in equation (7) involve, besides the Hamiltonian parameters 
and an,. various quadratic forms of the mean fields xlm corresponding to the single-boson 
ME of 0 and its moments. Again, the expanded form is given to facilitate the illustration 
of layers in the 1 /N expansion. Notice that the i coefficients On, in the ith column have 
n f m  = i - 1 constant, and are referred as the layer 'i - 1'. The leading term in equation (7) 
is independent of the angular momentum projection and forms the zeroth layer. The N and e dependence of the ith layer is the same as the ith power of the first layer. Thus one can 
consider the double expansion N and E as a single expansion in layers. The connection 
between the layers in the normalization (3) and the ME (7) is that in order to calculate the 
ME up to the ith layer, one needs to know the coefficients a., up to that layer (to order 
1/N2'). This is very useful in higher-order calculations as it restricts the number of terms 
in the expansion, cutting down the amount of algebra. To make this point clear, we note 
that the terms in equation (7) is complete to the thud layer whereas a complete calculation 
to order UN6 would require six more terms belonging to the fourth, fifth and sixth layers. 
As will be seen in section 4, the complexity of the coefficients On, increases exponentially 
with layers, and each of the extra terms would lead to expressions pages long, From a 
practical point of view, such accuracy is never required, and hence the use of layers is a 
more sensible approach than a complete calculation to a given order in 1 / N .  

3. Vibron model 

In this section, we give an exact evaluation of the norm integral in the vibron model. 
Substituting z = COSB. d&@) = PL(z), and 2: = 1/(1 + r ) ,  xy = r / ( l  + r )  for the 
normalized mean fields, equation (2) can be written as 
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Changing the variables to y = 1 + r z ,  and using the fact that PL(-z) = ( - l ) L P ~ ( z ) ,  
equation (8) can be split into two parts 

where 

Using the expansion for the Legendre polynomials [91 

the y integral in equation (IO) becomes standard and is given in terms of the hypergeometric 
function as [IO] 

L-2m ( 1  + I+r 1 dy (Y - l)L-"yN = (-1) Iv+ 1 zFi(N + 1,2m - L;  N+2;  1 + r )  

where in the last step we have used the identity [Ill 

zFl (a ,b;c;z )= (1 -z)-b2Fl (13) 

Substituting equations (11). (12) in (10). we obtain 

In order to sum the series in equation (14), we substitute for zF1 in equation (14): 

1 , 2 m - L ; N + 2 ; -  
r 

.. ~ (7) . ~ (15) 

Since the tenns with n z L - 2m are zero, we can extend the upper summation limit in 
the resulting equation to L,  and interchange the sums over m and n. The m summation can 
now be done easily if one notices from equation ( 1 1 )  that the derivatives of PL are given 

( L  - 2m)(L - 2m - 1 ) .  . . ( L  - 2m - n + 1 )  1 + r  " L-2m 

ll=l ( N + Z ) ( N + 3 ) . . . ( N + n + I )  

by 

x ( L  -2m - l ) . . . ( L  - 2 m - n +  1) (16) 
which has precisely the form needed. The derivatives of PL can also be evaluated using 
the generating function for the Legendre polynomials and are given by [ 121 
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where (a). = a(a + 1). . . (a +n - 1). Thus, use of equations (15)-(17) in (14) yields 
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- L , L + l ; N + 2 ; -  
2r 

(1 + r)N+l 

N + l  
- - 

Finally, substituting equation (18) in (9) and noticing from equation (4) that a = 2r/(l +r) ,  
we obtain the following closed form expression for the normalization 

The second term in equation (19) is specific to mixed-parity boson systems. @or identical 
parity systems, it is equal to the first t e h ,  leading to the factor of 2 in equation (3).) This 
term vanishes in the O(4) limit of the vibron model ( X I  = XO,  a = I), and is completely 
negligible for realistic breakings of the O(4) limit. Therefore, in the following, we have 
ignored the contributions from the second term to simplify the expressions. To make the 
connection with equation (3) clear and extract the coefficients anm in  the 1/N expansion, 
we write #I as 

i, Z(E - 2) 
zF1 ( - L ,  L + 1; N + 2; X )  = 1 - __ N + Z X  + 2(N + 2 ) ( N  +3)" 

X3+.. . .  
,?.(E - 2 ) ( i  - 6)  

3!(N -t 2) (N  + 3)(N + 4) 
- 

Inspection of equation (20) shows that the normalization has indeed the form given in 
equation (3); Below, we tabulate some of the coefficients a., obtained from the expansion 
of equations (19), (20): 

uno = n!a" ql = 6a - 2 ff32 = 18a - 8 a31 = 6(7a2 - 6u + 2) 

a43 = 40a - 20 = 4(75a2 - 80a + 27) 

a41 = 24(15a3 - 25a2 + 2Oa - 6). 
The second term in equation (19) leads to a similar expansion and, if the need arises, it 
could easily be included in the final result by modifying a,,,,. 

4. Algebraic evaluation 

It is clear from the derivation for the simplest case in the last section that an exact evaluation 
of the norm integral for other bosonic SGA is not an easy task. In this section, we employ, 
instead, algebraic techniques to obtain the coefficients anm in equation (3). The technique 
is based on the symmetries of the boson system, namely boson number conservation 
and rotational invariance demands that the expectation values of the number and angular 
momentum operators must satisfy 

Comparing equation (22) with the general form (7). we see that, for the number operator, all 
the coefficients On, should vanish except 0, = 1. Similarly, forthe angular momentum 
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operator, all should vanish except O10 = a’. To illustrate the form of the resulting equations, 
we give below the ME in equation (22) up to the second layer: 

a 
(-a + a1/2a - &IO + ~ ~ 2 1  12) 

+...} (23) 

where a. = xi f.+lxf denotes the higher moments of a in equation (4). There are no first- 
layer terms in equation (23) as these conditions are automatically fulfilled by the correct 
choice of a,,... Each ME in equation (23) leads to three linear equations for the four second- 
layer coefficients ann-,, n = 1-4. Thus, together, the set of six linear equations completely 
determine these coefficients. We emphasize the recursive form of the equations which makes 
the solutions trivial to obtain. Extending the calculations in equation (23) to the third layer 
introduces seven more coefficients ( ~ 5 4 ,  ~ ~ 6 5 .  ffn,-2, n = 2-6) and six more equations into 
the second-layer set. Of these, two come from the coefficients of L 3 / N 5  and i 4 / N 6 ,  
which do not automatically vanish, and involve only the second-layer coefficients. Hence 
they are used to determine a54,  f f65. The remaining four equations are obtained from 
the vanishing of On, with n + m = 3 and involve the third-layer coefficients an,-2. In 
general, the ith layer will introduce 3i -2  coefficients and 3i -3  equations into the existing 
system of linear equations for each Me. Hence, together they (over) completely determine 
the coefficients cynm. Although the proposed method is straightforward, the complexity of 
calculations increases exponentially with each layer, and a hand calculation beyond the 
second layer is not feasible. Using the MATHEMATICA software [7] ,  however, the lengthy 
algebraic manipulations can be performed easily and, in this way, we have determined CY,, 

up to the fourth layer. Here we quote the second- and t! ird-layer coefficients which seem 
to be sufficient for the purposes of nuclear and molecular SGA: 

a10 = 1 f a  -a1/2a 
aZl = 4 + 6 a - 3 a l / a  
a32=10+18a-9a l /a  
a43 = 20 + 40a - 20al / a  
a54 = 35 + 75a - 75a1/2a 
a65 = 56 + 126a - 63al/a 
a20 = 2 + 6a + 2a2 - 3a1-  10a1/3a + 3a:/2a2 - a2/3a 
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a31 = 18 + 12a -!- 4%' - 54al - 40al/a + 45at/2a2 - k z / a  

0142 = 88 + 400a + 300a2 - 360al - 220al/a + 135a:/a2 - 20az/a 
as = 308 + 1500a + 1300a2 - 1500~1 - 2450a1/3a + 525af/az - 200az/3a 
ff64 = 868 + 4410a + 4200~' -4125~1- 2380alla + 1515a:/az - 115a2/a. (24) 
The advantage of the present derivation is that the results are completely general and could 
be used for any bosonic SGA. In particular, using a4 = 2% in equation (24), we recover the 
vibron model results given in equation (21). 

5. Conclusions 

Angular momentum projection integrals are essential ingredients in the 1 / N  expansion 
calculations. Practical application of this method in either mclecular or nuclear physics 
hinges on accurate evaluation of such integrals to rather high orders. In this paper, we have 
shown that the normalization integral in the vibron model can be obtained in closed form 
by direct integration. Generalization of this result to other SGA, however, does not seem to 
be easy. We have, instead, employed algebraic techniques and calculated the coefficients in 
the 1/N expansion of the normalization integral for an arbitrary bosonic SGA. The method 
is easily adapted to computer algebra which allows calculation of the norm integral to any 
desired level of accuracy without going through the usual algebraic drudgery. Application 
of the present results to spectra of diatomic molecules and high-spin states in nuclei will be 
presented elsewhwere. 
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